

http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf

Maximum x-dimension of a grid of thread blocks, 65535, 231-1

So the max number of threads that can contain in 1D-grid = 65535*1024=67,107,804.

We now use a thread to compute an element in vector. Since the core operation is matrix-vector

multiplication, we have tested several methods.

Environment: Windows 7 GPU: Nvidia Geforce GT525M

Matrix: 8192*8192 Vector: 8192

Type: Float

Naïve multiplication 289.2ms

Coalesce memory 187.3ms

Shared memory 200ms

CuBLAS cublasSgemv To be tested

It is confused that the optimization using shared memory performs worse than the second one.

Perhaps it is due to the improper size of shared memory, which leads to low usage of processor.

Another reason may be the cost of synchronization. We will test it in the future work.

According to Pegasus, PageRank can be computed as iterated matrix-vector multiplication.

Therefore in a single machine, there are steps

1. Generate adjacent matrix and initial vector from file.

2. Iteratively run matrix-vector multiplication in GPU.

3. If the value of vector is converged, or it reaches the maximum iteration times, stop computing

and load vector data to memory.

When running on local machine, there are several problems in each step.

Due to the limit, it is impossible to store the whole matrix in memory when there are 10,000 nodes.

A direct solution is to load data segment separately. However, this method require data transferring

from disk to memory, then memory to graph memory, both of which are expensive costs. Another

http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf

solution is to store coordination pair of element with non-zero value, instead of the whole matrix.

Since most of adjacent matrix of a large graph in real life is sparse. The space complexity reduces

from S(n^2) to S(n). Therefore, if the matrix is 1M*1M*4B, the compressed one is only 2M.

The time complexity is also decreased when using sparse matrix method. According to a paper, the

complexity reduces from O(n^3) to O(n). So we choose to use this method.

0

1

2

pointer

s
(c_index, value)

(c_index, value)

(c_index, value)

